
Taking a New Contour:

A Novel View on Unit Root Test

Yoosoon Chang
Department of Economics

Rice University

and

Joon Y. Park
Department of Economics

Rice University and Sungkyunkwan University

Abstract

In this paper we introduce a new view on the distributions of unit root
tests. Taking a contour given by the fixed sum of squares instead of the
fixed sample size, we show that the distributions of most commonly used
unit root tests such as the ones by Dickey-Fuller (1979, 1981) and Phillips
(1987) are normal in large samples. The normal asymptotics along the
new contour hold under both the null of a unit root and the local-to-unity
alternative. Moreover, our results are applicable also for the models with
deterministic components, as long as they are removed recursively using
only the past information.
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1. Introduction

It is well known that the distributional theories for many of the commonly used unit
root tests are nonstandard. For instance, the Dickey-Fuller and Phillips tests both
have nonnormal distributions, which are usually represented by the functionals of
Brownian motion and Ornstein-Uhlenbeck process under respectively the unit root
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null and the local-to-unity alternative. The characteristics of their null distributions,
which are often referred to as the Dickey-Fuller distributions named after who first
tabulate them, have been studied by several authors including Evans and Savin (1981,
1984) and Abadir (1993). In particular, the Dickey-Fuller distributions are known to
be asymmetric and skewed to the left. See, e.g., Fuller (1996).

This paper introduces a novel view on these and other related distributions. The
sampling distribution of a statistic is usually obtained for a given sample size. Using
the conventional sampling distribution of the statistic for the purpose of statistical
inference thus implies that we evaluate the likelihood of a realized value of a statistic
along the contour given by the fixed sample size. In this paper, we suggest to take
a different contour in obtaining the sampling distribution of the statistic, i.e., the
contour that is given by the fixed sum of squares. In order to assess the likelihood
of the statistic, we therefore look for other possible realizations with their sum of
squares, rather than their sample sizes, holding fixed.

For the observations from stationary time series, the sum of squares becomes a
constant multiple of the sample size for large samples. The contours of the equi-
sample-size and the equi-squared-sum to evaluate the likelihood of a realized sample
are thus virtually identical if the size of the sample is large enough. This is not
so for the samples from unit root processes. If normalized as necessary, the sum of
squares of the samples from unit root processes remain to be random. For the unit
root samples, it would thus yield a new meaning different from the conventional one
to evaluate the likelihood of a given realization against all other possible realizations
with the same sum of squares.

As an illustration, we provide ten simulated sample paths with equal sample size,
and another ten with equal sum of squares, respectively, in Figures 1 and 2.1 For the
equi-sample-size paths provided in Figure 1, the one with the largest sum of squares
are presented in the top-left corner and the one with the smallest sum of squares in
the bottom-right corner. For the sample paths with equi-squared-sum in Figure 2,
the one with the smallest sample size to attain the required squared sum is presented
in the top-left corner, and the one with the largest sample size in the bottom-right
corner. Figures 1 and 2 represent two different contours we may take to obtain the
sampling distributions of the statistics involving unit root processes.

Of course, to select a contour in evaluating the likelihood of a given realization
would ultimately be a subjective matter. Here the choice is whether to look at other
possible realizations along the contour of the samples either of fixed sample size
(with varying sums of squares as required to have the same sample size) as in Figure
1, or of fixed sum of squares (with varying sample sizes as required to have the same

1More precisely, ten sample paths at 5%, . . . , 95% percentiles were chosen out of ten thousand
realizations. The sample size is fixed at 100 for Figure 1, while we set the sum of squares to be 0.23
times 100 squared for Figure 2. The setting yields the most comparable results for the two contours
considered here.
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Figure 1: Sample Paths with Equal Sample Size

Figure 2: Sample Paths with Equal Sum of Squares
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sum of squares) as in Figure 2. Both the size and the sum of squares represent the
information contents in the sample on population. Needless to say, the larger dataset
and the dataset with larger sampling variations would help us perform more precise
inference on the underlying data generating mechanism.

For the unit root tests, we believe that the sum of squares more precisely measures
the information content of the samples. The most conspicuous characteristic of the
unit root processes (that is constrasted with the stationary process) is the presence
of stochastic trend. The degree of conspicuousness of their stochastic trend would
essentially lead us to believe, or not to believe, the presence of a unit root in the
underlying time series. How conspicuous should they be for us to reject, or not
to reject, the unit root hypothesis? Here comes the point that we need a formal
statistical test. The remaining question is whether to evaluate the likelihood of a
given observation against other possible realizations either of the same sample size
exhibiting different degrees of stochastic trends, or having similar degrees of stochastic
trends with varying sample sizes. To us, the latter seem more appropriate.

We show that the contour of the equi-squared-sum yields normal asymptotics and
conventional statistical theories for the unit root tests. The critical values for the
t-ratio can therefore be found from the standard normal table, and all other relevant
statistical theories both under the null of a unit root and under the alternative of
local-to-unity just follow exactly as in the standard regression model. This is true for
models with fitted mean and fitted trends as well, as long as they are removed using
only the past information for each observation and the unit root tests are performed
in appropriately formulated models. Taking the new contour given by the fixed sum
of squares would necessarily make it easier to reject the null hypothesis of a unit
root, compared with the conventional approach. The evidence for a unit root in most
of macroeconomic time series established in the literature would therefore become
weaker, if the new contour is taken.

The rest of the paper is organized as follows. The main results of the paper are
given in Section 2. There we consider the prototype unit root model and the test
statistic, and develop a new asymptotics along the contour of the equi-squared-sum.
The asymptotics are shown to be normal. Section 3 extends our main results into
several directions. In particular, it is shown that our main results continue to hold
under the local alternatives and for the models with fitted mean and fitted trends.
The tests based on more general unit root models are also investigated and shown
to yield the normal asymptotics along the new contour. The concluding remarks are
given in Section 4, and the mathematical proofs are collected in Appendix. A word
on notation. As usual, →d and →a.s. are used to signify respectively the convergence
in distribution and the almost sure convergence, and ∼ denotes the equivalence in
distribution. The standard Brownian motion is denoted by W throughout the paper.
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2. Main Results

We consider the autoregressive model

yt = αyt−1 + ut (1)

and the test of the unit root hypothesis

α = 1 (2)

We assume that (ut) are iid with zero mean and unit (known) second moment. The
assumptions are far from being necessary. They are introduced here simply to avoid
unnecessary complications and focus on the main issue of the paper. The unknown
second moment can be easily estimated consistently from the fitted residuals. More-
over, we may consider more general models, i.e., the models driven by linear processes
or weakly dependent innovations, without any difficulty. For such general models, the
unit root test may be based on the regression augmented with the lagged differences
as for the tests by Dickey and Fuller (1979, 1981), or can be done using the statistic
modified nonparametrically as in the tests by Phillips (1987). They all have the same
large sample distributions as the test we consider explicitly in the paper, and there-
fore, our subsequent discussions are also applicable for them. See, e.g., Stock (1994)
for the test of a unit root in general models.

Let y1, . . . , yn be the random sample of size n. The unit root hypothesis is routinely
tested by the t-ratio on the autoregressive coefficient α, which is given by

Tn =
α̂n − 1

s(α̂n)
(3)

where α̂n = (
∑n

t=1 y2
t−1)

−1
∑n

t=1 yt−1yt is the least squares estimator of α with the
standard error s(α̂n) = (

∑n
t=1 y2

t−1)
−1/2. It is well known that under the null hypoth-

esis of unit root

Tn →d

(
∫ 1

0

W (r)2dr

)−1/2∫ 1

0

W (r) dW (r) (4)

as n → ∞. The limiting distribution in (4), often called the Dickey-Fuller distribution,
is nonnormal and skewed to the left. The unit root hypothesis is rejected if Tn takes
a large negative value.

We now introduce a new asymptotics. For any given x > 0, let m ≥ 1 be such
that

m = inf
k≥1

{

k
∑

t=1

y2
t−1 ≥ x

}

(5)

and consider the t-ratio Tm for the sample of size m. Here the sample size m is
determined by the squared sum of (yt) achieving a certain level. Note that m is a
function of (yt) as well as x.
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Theorem 2.1 Assume (2). If we let mn be defined as in (5) with x = n2c for each
n ≥ 1 and some fixed constant c > 0, then

Tmn
→d N(0, 1) (6)

as n → ∞.

Unlike the conventional result in (4), our approach here yields the normal asymptotics
given in (6). A few remarks are now in order.

Remark 2.2 (a) For the choice of

c =
1

n2

n
∑

t=1

y2
t−1 (7)

we have mn = n and Tmn
= Tn. The statistics Tn and Tmn

would then have identical
values, and may thus be regarded as the same statistic. The large sample distributions
in (4) and (6) are derived just by taking two different contours in evaluating the
likelihood of a realized value for the statistic. The distribution in (4) is obtained
by the conventional approach holding the sample size constant. On the other hand,
our new approach yields the distribution in (6) assuming the sum of squares to be
constant. The likelihood of a realized value for the statistic is evaluated against other
possible realizations from the samples of the same size (with varying sums of squares)
and of the same sum of squares (with varying sizes of samples), respectively in (4)
and (6).

(b) The samples from stationary time series would produce the same sampling
distributions for the two different contours considered above. For the stationary
samples,

∑n
t=1 y2

t−1/n converges to a fixed constant as the sample size grows, due
to the law of large numbers, making the two contours identical in large samples.
However, the two contours can be very different for the samples from the unit root
process. Most of all, the first contour is fixed and nonrandom, whereas the second
contour is path-dependent. As is well known,

1

n2

n
∑

t=1

y2
t−1 →d

∫ 1

0

W (r)2 dr

for the unit root process. The sum of squares, if normalized properly, would thus
remain to be random and depend upon a realized value of the underlying process.

(c) Depending upon which contour we choose to evaluate the likelihood of a real-
ized value for the statistic, the relevant null distribution and thus the critical value
of the test would be different. If the realized value of the statistic is to be compared
with all of its possible values obtained from the samples of the same size, the critical
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value from the Dickey-Fuller distribution should be used. If, on the other hand, the
realized value of the statistic is to be compared with all possible values given by the
samples of the same sum of squares, the standard normal critical value should be
used.

(d) The choice of the contour would ultimately be a subjective matter. However,
we may say that it would be more appropriate to choose the contour representing
the same amount of information on the hypothesis to be tested. In this regard, the
contour of the equi-squared-sum is especially appealing for the test of a unit root.
The most important distinguishing charactersitic of the sample path from the unit
root process (in comparison with that from the stationary process) is the presence
of stochastic trend, and its magnitude can be effectively measured by the sum of
squares. Choosing the contour of the equi-squared-sum for the unit root test thus
implies that we assess the likelihood of a realized test value against other possible
realizations having the stochastic trends of the same magnitude. This seems quite
reasonable.

(e) Our asymptotics also help to analyze the nonnormality of the Dickey-Fuller dis-
tribution. We may clearly see from the proof of Theorem 2.1 that, for a stopping time
τ such that

∫ τ

0
W (r)2dr is constant, the distribution of

∫ τ

0
W (r) dW (r)/(

∫ τ

0
W (r)2dr)1/2

is standard normal. The nonnormality of the Dickey-Fuller distribution is due to the
evaluation of the integrals over the fixed interval [0, 1], rather than the random interval
[0, τ ], in the limiting t-ratio.

In Figure 3, the densities for the distributions of Tn and Tmn
are given and com-

pared with the standard normal distribution. The densities of Tn are obtained for
each of the fixed sample sizes n = 10, 25, 50 and 100, while the densities of Tmn

are
computed for the fixed sum of squares given by n2c with n = 10, 25, 50, 100 and
c = 0.23. From simulations, we find that the asymptotic expected value of the stop-
ping time τ defined by

∫ τ

0
W (r)2dr = c is approximately unity with this choice of c.

The densities, in all cases, are quite insensitive to the choice of value of c. Along the
contour of the fixed sum of squares, the finite sample distribution of Tmn

appears to
converge rather rapidly. Our normal asymptotics thus provide very good approxima-
tions for the finite sample distributions of Tmn

. Even for moderate size samples, the
finite sample distributions are indeed quite close to standard normal. In contrast, the
distributions of Tn are quite distinct from standard normal at all sample sizes.
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Figure 3: Densities of t-ratios from Equi-Sample-Size and Equi-Squared-Sum Con-
tours

3. Extensions

3.1 Distributions under Local Alternatives

We now consider the local alternative

α = 1 −
δ

n
(8)

for some δ > 0. It is well known that

Tn →d −

(
∫ 1

0

Wδ(r)
2dr

)1/2

δ +

∫ 1

0

Wδ(r) dW (r)

(
∫ 1

0

Wδ(r)
2dr

)1/2
(9)

as n → ∞, where Wδ is the Ornstein-Uhlenbeck process given by Wδ(r) =
∫ r

0
exp[−(r−

s)δ]dW (s).
In contrast to the conventional asymptotics in (9), our new asymptotics yield

Corollary 3.1 Assume (8). If we let mn be defined as in (5) with x = n2c for each
n ≥ 1 and some fixed constant c > 0, then

Tmn
→d −c1/2δ + N(0, 1) (10)
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as n → ∞.

If we take the contour of the fixed sum of squares, we would thus get the standard
normal limiting distribution theory under both the null and alternative hypotheses.
The unit root t-ratio is distributed as standard normal under the null in large samples.
Moreover, it is also normal in large samples under the local alternative, with mean
shifted by a constant multiple of the locality parameter. Note that the constant c in
(10) is given by (7) for the realized sample of size n. Against the local alternatives,
the unit root test is expected to have more powers for the samples with large sums
of squares. As is evidently seen from (10) and (7), the large sum of squares has a
magnifying effect on the locality parameter.

3.2 Models with Intercept and Time Trend

Our normal asymptotics on the contour of the equi-squared-sum extend well to the
models with intercept and linear time trend, if it is removed effectively using only the
past information. In this case, the unit root test along the new contour can be based
on the regression

△∗yt = (α − 1)y∗
t−1 + et (11)

where (△∗yt) and (y∗
t−1) are demeaned or detrended (△yt) and (yt−1) that are defined

more precisely below. More dynamics can be introduced and AR(p), instead of AR(1)
in (11), can be used as we explain later.

First, we look at the model with intercept. To test for the unit root in (yt)
generated as

yt = µ + y◦
t

where (y◦
t ) follows the autoregressive process given in (1), we use (yµ

t ) given by

yµ
t = yt − y0 (12)

or

yµ
t = yt −

1

t − 1

t−1
∑

k=1

yk (13)

which is defined recursively for each t = 1, . . . , n. This recursive demeaning was
first proposed by So and Shin (1999) to demean positively correlated stationary AR
processes,2 and later used in Chang (2002) for the test of the unit root using the
nonlinear instrumental variable methodology.

The test for the unit root in (y◦
t ) can be based on the regression (11) with y∗

t−1 =
yµ

t−1 and △∗yt = △yt. The conventional limit distribution of the t-ratio T µ
n for the

unit root hypothesis in (11) is dependent upon the actual demeaning procedure that

2They found that the recursive demeaning reduces the biases of the parameter estimators.
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we introduce in (12) and (13). If (yµ
t ) given in (12) is used, then the limit distribution

of T µ
n is precisely the same as Tn without intercept given in (4). On the other hand,

if (yµ
t ) in (13) is used, then the conventional asymptotics would yield

T µ
n →d

(
∫ 1

0

W µ(r)2dr

)−1/2∫ 1

0

W µ(r) dW (r)

where

W µ(r) = W (r) −
1

r

∫ r

0

W (s)ds

as n → ∞.3

Now we consider the model with linear time trend, which we write as

yt = µ + νt + y◦
t

The recursive detrending of (yt) can be done to obtain

yτ
t = yt − y0 −

t
∑

k=1

1

k
(yk − y0) (14)

or

yτ
t = yt +

2

t

t
∑

k=1

yk −
6

t(t + 1)

t
∑

k=1

kyk (15)

There can be many other alternatives. The regression (11) may now be fitted with
y∗

t−1 = yτ
t−1 and △∗yt = △yt − (yn − y0)/n.

If we denote by T τ
n the t-ratio for the unit root hypothesis in regression (11), then

we have under the conventional asymptotics

T τ
n →d

(
∫ 1

0

W τ (r)2dr

)−1/2∫ 1

0

W τ (r) dW (r)

as n → ∞, where W τ is given by

W τ (r) = W (r) −

∫ r

0

1

s
W (s)ds

3It follows from the well known Brownian law of iterated logarithm [see, for example, Revuz and
Yor (1994, p.53)] that

1

r

∫ r

0

W (s)ds = O(r3/2(log log(1/r))1/2) a.s.

and therefore
1

r

∫ r

0

W (s)ds → 0 as r → 0

The process Wµ(r) then becomes a continuous stochastic processes defined on [0,∞), if we let
Wµ(0) = 0.
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or

W τ (r) = W (r) +
2

r

∫ r

0

W (s) ds −
6

r2

∫ r

0

sW (s) ds

respectively for (yτ
t ) given in (14) or (15).4

We now define a new contour

m = inf
k≥1

{

k
∑

t=1

y∗2
t−1 ≥ x

}

(16)

similarly as in (5), where y∗
t−1 = yµ

t−1 or yτ
t−1 respectively for the models with intercept

and linear time trend. Then we have

Corollary 3.2 Assume (1) and (2). If we let mn be defined as in (16) with x = n2c
for each n ≥ 1 and some fixed constant c > 0, then

T µ
mn

, T τ
mn

→d N(0, 1)

as n → ∞.

Our previous results therefore also apply for the models with intercept and linear
time trend. To obtain the normal asymptotics for the models with fitted mean and
fitted linear time trend, however, it is important to use only the past information
for demeaning and detrending. The normal asymptotics on the contour of the equi-
squared-sum do not follow if the usual demeaning or detrending is used.

3.3 Tests in General Unit Root Models

All our previous results may be easily and naturally extended to more general unit
root models. For the test of a unit root in the AR(p) model, we may consider the
regression

yt = αyt−1 +

p−1
∑

k=1

αk△yt−k + εt (17)

and test whether α = 1 using the t-ratio. This is well known. In this case, we let

xt = (△yt−1, . . . ,△yt−p+1)
′

and define

yp,t = yt −

(

n
∑

t=1

ytx
′
t

)(

n
∑

t=1

xtx
′
t

)−1

xt

4Exactly as in the previous footnote, the processes introduced here are well defined to be contin-
uous processes if we set them zero at the origin.
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Then the new contour for the t-ratio defined similarly as in (3) for regression (17) is
given by

m = inf
k≥1

{

k
∑

t=1

y2
p,t−1 ≥ x

}

(18)

in place of (5). If we denote by T p
mn

the t-ratio based on regression (17) using the
sample of size m given in (18), then it can be readily shown that our earlier result
continues to apply.

Corollary 3.3 Assume (17) and (2). If we let mn be defined as in (18) with x = n2c
for each n ≥ 1 and some fixed constant c > 0, then

T p
mn

→d N(0, 1)

as n → ∞.

We may show that the statistic T p
mn

has the same distribution as given in Corollary
3.1 of Section 3.1 under the local alternative (8). Moreover, the fitted mean and fitted
trends can be allowed and treated exactly as in Section 3.2, and the result in Corollary
3.2 holds also for the statistic T p

mn
. More precisely, the unit root test can be based on

△∗yt = (α − 1)y∗
t−1 +

p−1
∑

k=1

αk△
∗yt−k + et

similarly as in (11), where (y∗
t ) and (△∗yt) (with y∗

t−1 and △∗yt−k defined to be the
lags of y∗

t and △∗yt, respectively) are given exactly as in Section 3.2 for the models
with intercept and linear time trend.

As is well known, the unit root test based on the AR(p) model (17) is valid for
more general underlying processes if we let the order p of the AR model increase as the
sample size gets large. This was first noted by Said and Dickey (1984), who show that
the test based on the standard t-ratio is valid for general invertible ARMA processes
of unknown order if we set p = c nκ with some constant c > 0 and 0 < κ ≤ 1/3. More
recently, Chang and Park (2003) show that the procedure is indeed valid for more
general linear processes with minimum summability condition on their coefficients
and under much weaker condition p = o(n1/2) on the rate of increase for the fitted
AR orders. It can be shown that the result by Chang and Park (2003) continue to
hold if we take the new contour. Therefore, the proposed procedure exploiting the
new contour is applicable for a broad range of time series models under very mild
conditions.
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4. Conclusion

In this paper, we develop new asymptotics for the unit root tests that are commonly
used in practical applications. Our asymptotics take a new contour given by the fixed
sum of squares, and contrast with the conventional ones which evaluate the likelihood
of the realized test value along the contour of the fixed sample size. We show in the
paper that if the equi-squared-sum contour is chosen, the distribution theories for the
tests are normal. They have normal limiting distributions, and we may therefore use
the standard normal table for their critical values. As is well known, their conventional
asymptotics are nonstandard and nonnormal. Our theories developed in this paper
make it clear that we may legitimately use the standard normal table for many of the
commonly used unit root tests. It would lead us not to making an invalid inference,
but to exploring a new contour that has never been uncovered.

Appendix: Proofs of Theorems

Proof of Theorem 2.1 Assume (2). Define Wn(r) = n−1/2y[nr], where [x] denotes
the largest integer not exceeding x ≥ 0. It is well known that Wn →d W in the
space D(R) of cadlag functions endowed with the supremum norm. Moreover, by
extending the underlying probability space if necessary, we may assume that Wn and
W are defined in the same probability space and that Wn →a.s W uniformly. Such a
construction is possible for instance by the Skorohod embedding. See Hall and Heyde
(1980) for details.

For any fixed constant c > 0, we let τn(c) be given by

∫ τn(c)

0

Wn(r)2dr = c

and define a stopping time τ(c) to be such that

∫ τ(c)

0

W (r)2dr = c

Since Wn →a.s. W uniformly, we have

τn(c) →a.s. τ(c)

as n → ∞. Moreover, upon noticing τn(c) = mn/n + O(n−1) a.s., we may further
conclude that

mn

n
→a.s. τ(c)

as n → ∞.



14

Under the null hypothesis of unit root, we have

Tmn
=

(

mn
∑

t=1

y2
t−1

)−1/2 mn
∑

t=1

yt−1ut

=

(

∫ mn/n

0

Wn(r)2dr

)−1/2
∫ mn/n

0

Wn(r) dWn(r)

=

(

∫ τ(c)

0

W (r)2dr

)−1/2
∫ τ(c)

0

W (r) dW (r) + o(1) a.s. (19)

as n → ∞, since Wn →a.s. W uniformly and mn/n →a.s. τ(c) as n → ∞. However,
the process V defined by

V (s) =

∫ τ(s)

0

W (r) dW (r)

is the DDS Brownian motion of the martingale M

M(s) =

∫ s

0

W (r) dW (r)

and therefore,

c−1/2V (c) =

(

∫ τ(c)

0

W (r)2dr

)−1/2
∫ τ(c)

0

W (r) dW (r) ∼ N(0, 1) (20)

for any given c > 0. The reader is referred to, e.g., Revuz and Yor (1994) for the DDS
Brownian motion. The stated result now follows readily from (19) and (20), and the
proof is complete.

Proof of Corollary 3.1 We use the same notation as in the proof of Theorem 2.1.
Assume (8) and let Wnδ(r) = n−1/2y[nr]. It follows that Wnδ →d Wδ uniformly in
D(R). This is well known. If we define τδ(c) by

∫ τδ(c)

0

Wδ(r)
2dr = c (21)

for a given fixed c > 0, then mn/n →a.s. τδ(c) exactly as in the proof of Theorem 2.1.
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Under the alternative of local-to-unity, we have

Tmn
= −

(

mn
∑

t=1

y2
t−1

)1/2
δ

n
+

(

mn
∑

t=1

y2
t−1

)−1/2 mn
∑

t=1

yt−1ut

= −

(

∫ mn/n

0

Wnδ(r)
2dr

)1/2

δ +

(

∫ mn/n

0

Wnδ(r)
2dr

)−1/2
∫ mn/n

0

Wnδ(r) dWn(r)

= −

(

∫ τδ(c)

0

Wδ(r)
2dr

)1/2

δ +

(

∫ τδ(c)

0

Wδ(r)
2dr

)−1/2
∫ τδ(c)

0

Wδ(r) dW (r) + o(1) a.s.(22)

as n → ∞. We now consider the DDS Brownian motion

Vδ(s) =

∫ τδ(s)

0

Wδ(r) dW (r)

of the martingale

Mδ(s) =

∫ s

0

Wδ(r) dW (r)

from which the stated result follows immediately, due to (21) and (22).

Proof of Corollary 3.2 The proof is straightforward given our earlier results, and
therefore, omitted.

Proof of Corollary 3.3 The proof follows immediately from our previous results.
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